This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Prototropic Tautomerism in Phosphoryl-Hydroxyylide and Thiophosphoryl-Mercaptoylide Systems

M. I. Kabachnik^a; T. A. Mastryukova^a; I. M. Aladzheva^a

^a A. N. Nesmeyanov Institute of Organo-Element Compounds, USSR Academy of Sciences, Moscow

To cite this Article Kabachnik, M. I., Mastryukova, T. A. and Aladzheva, I. M.(1983) 'Prototropic Tautomerism in Phosphoryl-Hydroxyylide and Thiophosphoryl-Mercaptoylide Systems', Phosphorus, Sulfur, and Silicon and the Related Elements, 18:1,249-252

To link to this Article: DOI: 10.1080/03086648308076013 URL: http://dx.doi.org/10.1080/03086648308076013

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

PROTOTROPIC TAUTOMERISM IN PHOSPHORYL-HYDROXY-YLIDE AND THIOPHOSPHORYL-MERCAPTOYLIDE SYSTEMS

M.I. KABACHNIK, T.A. MASTRYUKOVA, I.M. ALADZHEVA A.N.Nesmeyanov Institute of Organo-Element Compounds, USSR Academy of Sciences, Moscow

<u>Abstract</u> Two new types of tautomerism are discussed: phosphoryl-hydroxyylide and thiophosphoryl-mercaptoylide tautomerism.

The possibility of phosphoryl-hydroxyylide tautomerism >P(O)-CH< >P(OH)=C<

phosphorus analogue of keto-enol tautomerism was first discussed by A.Ye. Arbuzov and A.I.Razumov in 1929.

The position of equilibrium in prototropic tautomeric systems is known to be determined by the relationship between the acid properties of the forms and to be always shifted towards the less acid form. In all the previously known alkylphosphoryl compounds - RoP(O)CHR'R", R(RO)P(O)CHR'R" or (RO)oP(O)CHR'R" the acidities of CH forms are so small that OH forms are not observed at all. For the appearance of hydroxyylide structures it was, therefore, necessary to introduce into the CH group strongly acidifying electron-acceptor groups R' and R". Indeed, the introduction of two SO₂Ph groups made it possible for O.I.Kolodiazhnyi2 to observe, along with a stable CH form, the formation of an unstable hydroxyylide. We observed³ in solution only the hydroxyylide form after protonating dimethylphosphoryl-substituted phosphoranphosphonium salt by means of HSO3F

$$Me_2P(0)C(=PPh_3)^+PPh_3.X^ Me_2P(OH)=C(^+PPh_3)_2.2X^-$$

To estimate the electron effect of different groups on CH acidity by means of an equation of Hammett's type we developed a system of $\sigma_{\rm C}^-$ constants having the same meaning as Hammett's σ^- constants but differing for each X group depending on whether it was attached to a primary, secondary or tertiary carbon atom (constants $\sigma_{\rm CH_3}^-$, $\sigma_{\rm CH_2}^-$ and $\sigma_{\rm CH}^-$, respectively). 4 Good results were obtained when using these constants to correlate the pK_a of CH acids with $\Sigma\sigma_{\rm C}^-$. Application of these constants to the above examples showed that for R₂P(0)CHXY structures the region of phosphoryl-hydroxyylide tautomery should be sought within the interval of $\Sigma\sigma_{\rm CH}^-$ values for two phenylsulphonyl and two triphenylphosphonium groups, i.e. from 1.42 to 2.16.

Logically, the first compound investigated in this interval at $\Sigma \sigma_{CH}^- = 1.78$ was $Ph_2P(0)CH(Ts)^+PPh_3$. Br. This crystalline substance proved to have an undoubtedly hydroxyylide structure. To identify an ylide OH structure or a phosphoryl CH structure we worked out (partially based on literature data) a system of criteria in 31P NMR, PMR, IR and other spectra. The structure of the above crystalline salt was studied by Xray analysis. For the central carbon atom a planar trigonal configuration was found with the angles sum of 358.6°, which unambigously confirms the OH structure. A strong OH...Br hydrogen bond (1 = 3.078 Å) is observed. In solution this salt also has OH structure. Only in CF3COOH the structure of the salt changes into a CH structure, and in CH2Cl2 solution in the presence of one or two mol CF3COOH both forms are observed.5 The $\sum \sigma_{\mathbb{C}}^{-}$ interval to detect among the Ph₂P(0)CHXY structures has thus been narrowed to 1.42 - 1.78. And,

indeed, we found a system with pronounced tautomeric equilibrium

Ph₂P(0)CH(COOEt)⁺PPh₃Cl⁻ = Ph₂P(OH)=C(COOEt)⁺PPh₃Cl⁻ with the corresponding $\Sigma \sigma_{CH}$ = 1.68. In crystalline state this salt is an hydroxyylide. In solution the equilibrium of CH and OH forms of this salt depends on temperature. With an increase in temperature the content of the CH form increases; and the OH form is thus more stable ($-\Delta H$ = 1.66 kcal/mol). The tautomeric equilibrium constant also depends on the nature of solvent. By their "enolyzing" ability the solvents can be arranged in a series: EtOH > CH₂Cl₂ > (CH₂Cl₂+MeCN, 4:1) > MeNO₂ > MeOH > CHCl₃ > CF₃COOH.

A large excess of HCl or HBr converts both tautomers into dication

Ph2+P(OH)-CH(COOEt)+PPh3

Thiophosphoryl-mercaptoylide tautomerism

 $R_2P(S)$ -CHXY \longrightarrow $R_2P(SH)$ =CXY

has previously been completely unknown. Basicity of the P=S-group is essentially lower than that of P=O and acidity of the P-SH fragment, accordingly, - higher than that of P-OH. The region of thiophosphoryl-mercaptoylide tautomerism could be expected to shift in the $\Sigma \sigma_{\text{CH}}$ scale towards higher values which corresponds to a higher CH acidity of the thiophosphoryl form. The first mercaptoylide observed by us has the structure of Me₂P(SH)=C(+PPh₃)₂.2SO₃F and was obtained by protonating the conjugated base, Me₂P(S)C(=PPh₃)-+PPh₃.X , with fluorosulphonic acid.

We synthesized a number of ~-substituted thiophosphorylphosphinomethylenes

 $R_2P-C(=PPh_3)Y + S \longrightarrow R_2P(S)-C(=PPh_3)Y$ R = Me, Bu, Ph, Eto, Pho; Y = COOEt, Ts, $^+PPh_3X$. and investigated their protonation in different conditions 7

$$R_2P(S)=C(=PPh_3)Y$$
 $R_2P(S)=C(=PPh_3)Y.X^ R_2P(S)=C(+PPh_3)Y.X^-$

Protonation of all the ylides with Y = COOEt or Ts, irrespective of the nature of R, yields CH forms. But ylides with two triphenylphosphonium groups are bases so weak that in usual conditions they are not protonated at all. However, at a low temperature under the action of the excess of acid or under the action of HSO₃F they are protonated on sulphur with the formation of SH ylide. Not in a single case did we observe the formation of a mixture of tautomeric forms. The region of thiophosphoryl-mercaptoylide tautomerism may well lie within the interval of $\sum \sigma_{CH}^{-}$ values between 1.78 and 2.16 that has not been studied yet.

REFERENCES

- 1. A.Ye.Arbuzov and A.I.Razumov, Zh. Russ. Fiz. Khim. Obshch., 61, 623 (1929).
- 2. O.I.Kolodiazhnyi, Zh. Obshch. Khim., 46, 2386 (1976).
- 3. T.A. Mastryukova, I.M. Aladzheva, I.V. Leontyeva, V.A.Svoren', P.V.Petrovsky and M.I.Kabachnik, Zh. Obshch. Khim., 47, 2454 (1977).

 4. M.I.Kabachnik and T.A.Mastryukova, Dokl. Akad.
- Nauk SSSR, 260, 893 (1981).

 5. T.A.Mastryukova, I.M.Aladzheva, O.V.Bykhovskaya, P.V.Petrovsky, M.Yu.Antipin, Yu.T.Struchkov and M.I.Kabachnik, Dokl. Akad. Nauk SSSR, 264, 1396 (1982).
- 6. I.M. Aladzheva, I.V. Leontyeva, P.V. Petrovsky and T.A. Mastryukova, Zh. Obshch. Khim., 52, 2358
- 7. T.A. Mastryukova, I.M. Aladzheva, O.V. Bykhovskaya, I.V. Leontyeva, P.V. Petrovsky and M.I. Kabachnik, Zh. Obshch. Khim., 53, No. 9 (1983).